Step of Proof: nth_tl_append
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
nth
tl
append
:
T
:Type,
as
,
bs
:(
T
List). nth_tl(||
as
||;
as
@
bs
) ~
bs
latex
by ((InductionOnList)
CollapseTHEN (Reduce 0))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
T
List
C1:
bs
:(
T
List).
bs
~
bs
C
2
:
C2:
1.
T
: Type
C2:
2.
T
List
C2:
3.
u
:
T
C2:
4.
v
:
T
List
C2:
5.
bs
:(
T
List). nth_tl(||
v
||;
v
@
bs
) ~
bs
C2:
bs
:(
T
List). nth_tl(||
v
||+1;[
u
/ (
v
@
bs
)]) ~
bs
C
.
Definitions
x
:
A
.
B
(
x
)
,
s
~
t
,
x
:
A
B
(
x
)
,
Type
,
s
=
t
,
type
List
,
t
T
,
i
z
j
,
i
<z
j
origin